
Anexo Técnico – Optimización Frontend React (Flujo GET) 
Elaborado	por:	High	Cloud	Tec	–	Oscar	Iván	Ocampo	

Cliente:	Coris	Argentina	

Fecha:	4	de	noviembre	de	2025	

Documento	confidencial	
	

1. Contexto 
Durante	las	pruebas	del	flujo	de	cotización	(HAR),	el	tiempo	de	respuesta	del	GET	
Comparador	alcanzó	13.8	segundos,	lo	que	representa	el	68%	del	tiempo	total	de	la	
cotización.	Este	valor	está	fuera	del	SLA	objetivo	(≤8s)	y	muestra	que	el	cuello	de	botella	
principal	está	en	la	capa	frontend	/	renderizado	visual,	no	en	el	backend.	
	
El	análisis	de	recursos	indica	un	alto	peso	en	archivos	bundle.js	(>1.5	MB),	múltiples	hojas	
CSS	y	JS	sin	minificar,	carga	sincrónica	de	imágenes	grandes	y	scripts	externos	de	tracking	y	
chat.	

2. Diagnóstico técnico del flujo GET 
Causa	probable	 Impacto	 Solución	técnica	

recomendada	

Componentes	React	con	
renderizado	completo	del	
comparador	

Aumenta	el	TTI	y	bloquea	la	
interactividad	

Implementar	lazy	loading	
de	secciones	no	visibles	
(React.lazy	/	Suspense)	

Bundle	único	sin	división	de	
módulos	

Aumenta	el	tiempo	de	
descarga	inicial	

Aplicar	code	splitting	con	
Webpack	o	Vite	
(splitChunks,	dynamic	
import)	

Carga	de	imágenes	sin	
optimización	

Eleva	LCP	y	ralentiza	el	
render	

Comprimir	imágenes	a	
WebP/AVIF	y	usar	
loading='lazy'	

Scripts	externos	
bloqueantes	(Chatbot,	Tag	
Manager,	Analytics)	

Retrasa	el	render	principal	 Agregar	defer	o	async	en	
scripts	no	esenciales	

Sin	caching	ni	headers	
eficientes	

Repetición	de	descargas	en	
cada	request	

Añadir	Cache-Control	
(3600s)	y	validación	ETag	



Sin	CDN	activo	para	
estáticos	

Aumenta	latencia	global	 Implementar	CDN	
(CloudFront	/	Cloudflare)	
con	reglas	para	/static/,	
/img/,	/js/	

3. Acciones prioritarias para el desarrollador 
Acción	 Descripción	 Prioridad	

Optimizar	carga	de	
componentes	React	

Aplicar	lazy	loading,	
React.memo	y	Suspense	en	
secciones	del	comparador.	

Alta	

Reducir	y	minificar	bundle	 Dividir	el	paquete	principal	
JS	y	CSS,	y	minificar	en	
build.	

Alta	

Comprimir	imágenes	y	
banners	

Implementar	pipeline	de	
compresión	(WebP/AVIF)	
en	servidor	o	CI/CD.	

Media	

Revisar	scripts	externos	 Posponer	carga	de	
tracking/chatbot	hasta	que	
el	DOM	esté	listo.	

Media	

Implementar	CDN	y	cache	
estático	

Servir	JS/CSS	desde	
CloudFront	con	cache	
dinámico	y	headers	
optimizados.	

Media	

4. Métricas objetivo tras optimización 
Métrica	 Estado	actual	 Meta	post-optimización	

GET	Comparador	 13.8	s	 ≤	6.0	s	

LCP	(Largest	Contentful	
Paint)	

6.8	s	 ≤	3.0	s	

Speed	Index	 12.2	s	 ≤	6.0	s	

Peso	total	página	 3.2	MB	 ≤	1.5	MB	

5. Validación sugerida 
Una	vez	aplicadas	las	correcciones:	
1.	Ejecutar	nueva	auditoría	con	Lighthouse	(modo	Performance).	
2.	Validar	tiempos	en	Chrome	DevTools	→	Network	(GET).	



3.	Repetir	test	HAR	para	registrar	evidencia	técnica.	
4.	Entregar	resultado	comparativo	frente	a	este	informe	(Coris	v4).	


