Anexo Técnico — Optimizacion Frontend React (Flujo GET)
Elaborado por: High Cloud Tec - Oscar Ivan Ocampo

Cliente: Coris Argentina

Fecha: 4 de noviembre de 2025

Documento confidencial

1. Contexto

Durante las pruebas del flujo de cotizaciéon (HAR), el tiempo de respuesta del GET
Comparador alcanz6 13.8 segundos, lo que representa el 68% del tiempo total de la
cotizacion. Este valor esta fuera del SLA objetivo (<8s) y muestra que el cuello de botella
principal esta en la capa frontend / renderizado visual, no en el backend.

El andlisis de recursos indica un alto peso en archivos bundle.js (>1.5 MB), multiples hojas
CSS y JS sin minificar, carga sincrénica de imagenes grandes y scripts externos de tracking y

chat.

2. Diagnostico técnico del flujo GET

Causa probable

Componentes React con
renderizado completo del
comparador

Bundle tinico sin division de
modulos

Carga de imagenes sin
optimizacion

Scripts externos
bloqueantes (Chatbot, Tag
Manager, Analytics)

Sin caching ni headers
eficientes

Impacto

Aumenta el TTI y bloquea la
interactividad

Aumenta el tiempo de
descarga inicial

Eleva LCP y ralentiza el
render

Retrasa el render principal

Repeticion de descargas en
cada request

Solucion técnica
recomendada

Implementar lazy loading
de secciones no visibles
(React.lazy / Suspense)

Aplicar code splitting con
Webpack o Vite
(splitChunks, dynamic
import)

Comprimir imagenes a
WebP/AVIF y usar
loading="lazy’

Agregar defer o async en
scripts no esenciales

Anadir Cache-Control
(3600s) y validacién ETag



Sin CDN activo para
estaticos

Aumenta latencia global

3. Acciones prioritarias para el desarrollador

Accién
Optimizar carga de

componentes React

Reducir y minificar bundle

Comprimir imagenes y
banners

Revisar scripts externos

Implementar CDN y cache
estatico

Descripcion

Aplicar lazy loading,
React.memo y Suspense en
secciones del comparador.

Dividir el paquete principal
JS y CSS, y minificar en
build.

Implementar pipeline de
compresion (WebP/AVIF)
en servidor o CI/CD.

Posponer carga de
tracking/chatbot hasta que
el DOM esté listo.

Servir JS/CSS desde
CloudFront con cache
dinamico y headers
optimizados.

4. Métricas objetivo tras optimizacion

Métrica
GET Comparador

LCP (Largest Contentful
Paint)

Speed Index

Peso total pagina

5. Validacion sugerida

Estado actual

13.8s

6.8s

12.2s

3.2MB

Una vez aplicadas las correcciones:
1. Ejecutar nueva auditoria con Lighthouse (modo Performance).

2. Validar tiempos en Chrome DevTools — Network (GET).

Implementar CDN
(CloudFront / Cloudflare)
con reglas para /static/,

/img/, [is/

Prioridad

Alta

Alta

Media

Media

Media

Meta post-optimizacion
<6.0s

<3.0s

<6.0s

<1.5MB



3. Repetir test HAR para registrar evidencia técnica.
4. Entregar resultado comparativo frente a este informe (Coris v4).



